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ON THE THEORY OF FORMATION OF A SANDWICH
STRUCTURE OF A SPHERICAL HAILSTONE
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The paper analyzes the motion of the crystallization front under laminar and turbulent conditions of film mo-
tion on a hailstone surface. It is shown that the transition from one structure of ice to another is determined
by both the equilibrium critical thickness of the film and the generalized Maclean parameter. A relation be-
tween them has been established. An expression for Kachurin’s critical water content qK defining the dry–wet
transition of the hailstone growth has been obtained. It is shown that the Schumann–Ludlam critical water
content qSch−L gives only that value of the critical content at which droplets settled on the hailstone freeze. If
qSch−L < q < qK, then a film is formed on the hailstone surface, but it is in an unstable state and, in the
course of time, disappears, and the wet regime of the hailstone changes into the dry one. The hailstone will
grow in the wet regime only at q > qK.

Introduction. The mechanism of formation of a sandwich structure of ice growing in a supercool flow of
aerosol was proposed in [1] and was first used in investigating the problem of airplane icing and then the problem of
ice formation on sea vessels in a flow of splashes and supercool rain [1]. The point of the theory [1] is that on the
surface of an object placed in a flow of supercool water aerosol a water film is formed. Under the action of the shear
stress formed by the air flow it comes in motion. Depending on the film thickness and the air flow rate, its motion
can be both laminar and turbulent. This in turn leads to two mechanisms of heat transfer: molecular and turbulent
ones. In the first case, the film turns out to be unstable; it disappears, droplets crystallize without coalescing together
and form a dull nonuniform structure of ice. In the second case, crystallization occurs under a steady thickness of the
film and a transparent uniform structure of ice is formed thereby.

In [3–5], the mechanism proposed in [1] was considered on the assumption that the crystallization-front tem-
perature T′ was constant and equal to T0 = 273 K. This made it possible to give an analytical solution to the problem
of ice growth under the film. In the present paper, the results obtained by the author in [3–5] will be used to explain
the sandwich structure of the spherical hailstone.

1. Turbulent Thermal Diffusivity. According to [6, 7], the turbulent thermal diffusivity kt of the film on the
hailstone surface can be given by the formula

kt = b 
v

2
 (r − r′)2

ν
 ,   v = √ τ0

ρ
 . (1)

Let us introduce the mean thermal diffusivity k
_

t throughout the film thickness h = r′′  – r′:

k
_
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1
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(2)
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Between the dynamic velocity v and the characteristic motion of the film u∞ there exists the following relation [8]:

v = √ cf

2
 u∞ . (3)

The drag coefficient cf for the sphere is a function of the Reynolds number [8]. But for hailstones of radius
R C 0.003–0.02 m (this corresponds to the range of Reynolds number Re = 103–105 [6, 8]) the drag coefficient is a
constant cf = 0.4 [9]. However, it should be remembered that the diversity of forms of natural hailstones and the
roughness of their surface considerably change the value of cf. For various forms of hailstones the values of cf have
been determined [9]. Below, in the theoretical studies we will assume that the hailstone is spherical and cf is constant.

To find the relation between the flow rate of the film u∞ and the rate of fall of the hailstone V, we assume
that, according to [10], the turbulent friction remains constant and the friction of the crystallization-front surface τ0 in
the absence of droplet detachment from the hailstone surface is equal to the friction on the film surface F:

cf 
ρu∞

2

2
 = cf 

ρairV
2

2
 . (4)

In view of (4) for v we obtain the following expression:

v = √ρaircf

2ρ
 V . (5)

Substitution of (5) into (2) gives

k
_

t = B′cfV
2
h

2
 , (6)

where B′ = 2.8 (m2/sec)−1.
As is known, the steady rate of fall of a hailstone V is calculated by the formula [9]

V = √ 8

3
 
ρhsd

ρair
 
g

cf
 R  . (7)

Hence, substituting (7) into (6), for k
_

t we obtain

k
_

t = B1Rh
2
 , (8)

where B1 = 6.5⋅104 m−1⋅sec−1. For example, for a hailstone of radius R = 0.01 and a film thickness h = 10−3 m, k
_

t =
6.5⋅10−4 m2/sec, which is three orders of magnitude higher than the molecular heat conductivity coefficient of water k
= 1.3⋅10−7 m2/sec.

2. Ice Growth under the Film at Its Turbulent Flow. Once the expression for the turbulent heat-conductiv-
ity coefficient has been obtained, we can proceed to solving the problem of ice growth under the film. The heat-bal-
ance equation at the crystallization front is of the form [11]

ρ [Lcr − c (T0 − T∞)] 
dr′

dt
 + cρk

_
t 

dT
dr



 r=r′

 = 0 . (9)

In this case, according to [9], we neglect the heat outflow inside of the icy sphere, assuming the temperature of the
whole icy sphere equal to T0.

Assume that in a film of thickness h = r′′  − r′ the stationary distribution of temperature T
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r
2

(10)

has come to a steady state.
Hence
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

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


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From [11] at h << r′

dT
dr


 r=r′

 = 
dT
dr


 r=r′′

 F − 
∆T
h

 ,   ∆T = T0 − T1 . (12)

Find the mean value of the temperature gradient

dT
___

dr
 = − 

T0 − T1

r′′  − r′
 r′r′′ ∫ 

r′

r′′
dr

r
2  = − 

∆T

h
 .

(13)

The equation of the hailstone growth due to the inflow of droplets is of the form [9]

dr′′

dt
 = 

qEV
4ρ

 B u . (14)

In theoretical studies, we assume E = 1 [9].
Taking into account (8), (12), and (14), we write expression (9) in the form

dr′

dt
 = 

ut + R − r′

τ
 ,

(15)

τ = 
Lcr − c (T0 − T∞)

cB1R∆T
 . (16)

Write (15) in variables h = R + ut − r′ [5]:

dh
dt

 + 
h
τ

 = u . (17)

Find the steady-state thickness of the film at dh/dt = 0:

hs = uτ = 
Lcr − c (T0 − T∞)

4cρB′
 

qE

cfV∆T
 . (18)

The solution of Eq. (17) is of the form [5]

h = h0 exp 

− 

t
τ



 + hs 




1 − exp 


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t
τ







 . (19)
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From (19) it is seen that whatever the conditions h0 > hs or h0 < hs in the course of time the film thickness tends to
hs. Thus, in the turbulent regime of film motion, which is realized at a Reynolds number larger than the critical value
Re ≥ 1500 [11], the hailstone grows in the so-called wet regime under the steady-state film thickness with the forma-
tion of a uniform structure of ice.

Introduce the notation dr′/dt = w. We represent the solution of Eq. (15) as

w = w0 exp 

− 

t
τ



 + u 


1 − exp 


− 

t
τ







 . (20)

From (20) it is seen that in the course of time the rate of motion of the crystallization front tends to the rate of inflow
of droplets.

3. Ice Growth under the Film at Its Laminar Flow. Consider the laminary regime of film motion on the
hailstone surface. In this case, the heat-balance equation at the crystallization front will be of the form [11]

ρ [Lcr − c (T0 − T∞)] 
dr′

dt
 + λ 

dT
dr



 r=r′

 = 0 , (21)

where λ = cρk. In so doing, as in writing Eq. (9), we have neglected the heat outflow inside the icy sphere [9, 11].
Taking into account (12), we write (21) as

dr′

dt
 = 

k0

R + ut − r′
 , (22)

where

k0 = 
λ∆T

ρ [Lcr − c (T0 − T∞)]
 . (23)

Write (22) in variables h [5]:

dh

dt
 + 

k0
h

 = u . (24)

As is seen from (22) and (24), with increasing film thickness the rate of motion of the crystallization front decreases
and the film growth rate tends to the rate of inflow of droplets. Find the equilibrium film thickness heq from the con-
dition dh/dt = 0:

heq = 
k0

u
 = 

4cρk∆T

qEV [Lcr − c (T0 − T∞)]
 . (25)

The solution of (24) is of the form

h − h0 + heq ln 




h − heq

h0 − heq




 = ut . (26)

Taking into account that h = R + ut − r′, we write

 h − heq  =  h0 − heq  exp 




r′ − R + h0

heq




 . (27)
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If h0 > heq, then  h − heq  = h − heq, and from (27) it follows that as the crystallization front advances, the
film thickness increases, i.e., the rate of inflow of droplets is higher than the rate of motion of the crystallization front,
which also follows immediately from formulas (22) and (24). But if h0 < heq, then from (22), (24), and (27) it follows
that with advancement of the crystallization front the film thickness will decrease. Immediately from (26), substituting
h = 0, we can find the time during which the film with the initial thickness h0 will disappear:

t0 = 

h0 ln 




heq

heq − h0




 − h0

u
 . (28)

From (28) it is seen that the disappearance time of the film largely depends on its initial thickness, the water content
of the cloud, and the rate of fall of the hailstone.

Thus, the viscous equilibrium regime is unstable, since the slightest deviation of the film thickness h from
heq will disturb the system from equilibrium: the film thickness will monotonically depart from the equilibrium thick-
ness [1]. If at the initial time the film thickness is larger than the equilibrium thickness and the viscous regime of its
motion (molecular mechanism of heat transfer) takes place, then with increasing film thickness the motion goes to the
turbulent regime (turbulent mechanism of heat transfer).

4. Critical Film Thickness. Find the value of the critical film thickness at which the transition from the vis-
cous regime of film motion to the turbulent one occurs. From (18) and (25) we obtain

hsheq = k0τ = 
λ

cρB′cfV
2
 = 
λ

λt

 h
2
 ,   λt = cρk

_
t . (29)

From this we find the critical film thickness hc from the condition λt = λ:

hc = √hsheq  = √k0τ  = √ k

B′cf

 
1

V
 . (30)

Although both mechanisms of heat transfer exist concurrently [6], we assume, as is done in many problems in hydro-
dynamics [8], that at h < hc the chief mechanism of heat transfer is the molecular mechanism and at h > hc — the tur-
bulent one.

As is seen from (30), the critical film thickness determining the transition from one structure of ice to another
is not constant but varies with the rate of fall of the hailstone. From (17), (24), and (30) it follows that three different
situations are possible:

(1) heq < hc < hs, with (dh ⁄ dt)c > 0;
(2) heq = hc = hs, with (dh ⁄ dt)c = 0;
(3) heq > hc > hs, with (dh ⁄ dt)c < 0.
In the first case, at heq < hc < hs the film motion is laminar and its thickness increases to the value of hc at

which the laminar motion of the film changes over to turbulent motion. Then the film thickness keeps increasing until
the hs value is reached. In the second case, the thickness of the film is constant and its motion is turbulent. In the
third case, independent of the regime of film motion, its thickness decreases.

L. G. Kachurin [12] established the dependence of the structure of ice on the parameter λeq, which, according
to formula (25), is a function of the water content and temperature of the cloud and the rate of flow. The parameter
heq varied between 5⋅10−4 m and 4⋅10−2 m. It was established that there exists such a critical value of the equilibrium
thickness heq (denote it by heq.c) at which it may be expected with a fair probability that h > heq.c. The value of
keq.c is determined from experiment and is equal to 1.3⋅10−3  m [1, 12]. The notion of the critical equilibrium thick-
ness is based on the probabilistic interpretation of experimental materials but does not follow at once from either
Kachurin’s theory [1] or the theory developed above. In our opinion, there exists an equilibrium thickness of the film
determining its stability on the hailstone surface and assuming arbitrary values depending on the parameters defined by
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formula (25). The notion of heq.c is still to be substantiated within the scope of the probability-statistical theory of
hailstone growth.

Thus, if h < heq.c, then the molecular mechanism of heat conduction is observed, the film disappears, and
droplets crystallize without coalescing together, forming a dull nonuniform structure of ice. But if h > heq.c, then the
turbulent mechanism of heat conduction takes place, the film thickness, decreasing, tends to heq.c, and crystallization
occurs under a constant film thickness with the formation of a transparent uniform structure of ice.

It also follows from (17) and (24) that to the stable state dh/dt = 0 there corresponds some critical value of
the rate of inflow of droplets uc = k0

 ⁄ heq.c = hs
 ⁄ τ. Taking into account (23), we obtain

qEV
4ρ

 = 
k

heq.c
 

c∆T

[Lcr − c (T0 − T∞)]
 . (31)

The transition from one structure of ice to another will also be determined by the generalized Maclean parameter [13]

M = 
qEV
∆T

 
4λ

heq.c [Lcr − c (T0 − T∞)]
 . (32)

Thus, both the Maclean parameter M and the equilibrium critical thickness of the film heq.c characterize the
transition from one structure of ice to another. And formula (32) establishes the relationship between the parameters
M and heq.c: M D 1 ⁄ heq.c. In (32), at T0 − T∞ = 10oC the ratio Lcr/[c(T0 − T∞) C 8. Consequently, the term c(T0 − T∞)
compared to Lcr can be neglected.

The Maclean parameters and heq.c [1] are dimensional; therefore, it is convenient to introduce the dimension-
less parameter

K = 
qE

4ρ
 

Lcr

c∆T
 
Vheq.c

k
 , (33)

characterizing the transition from one structure of ice to another: at K > 1, a transparent uniform structure of ice is
formed; at K < 1, there appears a dull nonuniform structure of ice. Formula (31) also permits obtaining the value of
the critical water content qK determining the transition from one structure of ice to another:

qK = 
4λ∆T

heq.cEV [Lcr − c (T0 − T∞)]
 . (34)

For example, at E = 1 and ∆T = 1oC for a hailstone falling at a rate V = 20 m/sec the critical water content will be
qK ≈ 3⋅10−4 kg/m3.

5. Schumann–Ludlam Critical Water Content. The heat-balance equation on the film surface is of the form
[14]

− 4πR
2λ 
∂T

∂r



 r=r′′

 = 2πRλair Nu (T1 − T∞) + 2πRD Sh L (ρv − ρv∞) . (35)

The first and second terms on the right-hand side of (35) denote the quantities of heat leaving the film surface due to
convective heat exchange and evaporation.

Taking into account the temperature distributions in the film (12) and the heat-balance equations at the crys-
tallization front (21), we can write relation (35) in the form

4πR
2ρ [Lcr − c (T0 − T∞)] 

dr′

dt
 = 2πRλair Nu (T1 − T∞) + 2πRD Sh L (ρv − ρv∞) . (36)
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It is in this form that the heat-balance equation on the hailstone surface is written in the Schumann–Ludlam theory [9,
13]. As is known, in this theory Eq. (36) is obtained on the assumption that all droplets settled on the hailstone freeze,
i.e., the film on the hailstone surface is absent. In this case, the heat released under crystallization is directly removed
due to the evaporation and heat conduction. However, as shown above, Eq. (36) can also be obtained in the presence
of film on the assumption that in the film on the hailstone surface a stationary temperature distribution takes place.

In Secs. 2 and 3, it is shown that the rate of motion of the crystallization front strongly depends on the re-
gime of film motion on the hailstone surface. If such a film is absent and all droplets settled on the hailstone crystal-
lize, then dr′/dt = dr′′ /dt and the heat-balance equation at the crystallization front takes on the form

πR
2
VqE [Lcr − c (T0 − T∞)] = 2πRλair Nu (T1 − T∞) + 2πRD Sh L (ρv − ρv∞) . (37)

From (37), in the Schumann–Ludlam theory one obtains the equation for the critical water content

qSch−L = 
2λair Nu (T1 − T∞) + 2D Sh L (ρv − ρv∞)

RVE [Lc − c (T0 − T∞)]
 , (38)

at which all water entrapped by the hailstone freezes. The quantity qSch–L gives only that value of the water content
at which droplets that settled on the hailstone freeze. If qSch–L < q < qK, then on the hailstone surface a film is formed,
but it is unstable. In time t0 determined by formula (28), the film will disappear and the wet regime of the hailstone
will give way to the dry regime. Only at a water content larger than Kachurin’s water content (q > qK) will the hail-
stone grow in the wet regime.

CONCLUSIONS

1. In the turbulent regime of film motion, which is realized when the Reynolds number is larger than the
critical one, independent of the initial value, in the course of time the film thickness tends to the value of hs. In so
doing, the hailstone grows in the so-called wet regime under the steady film thickness, and a uniform structure of ice
is formed thereby.

2. In the laminar regime of film motion, which is realized when the Reynolds number is smaller than the
critical one, the film growth is determined by its equilibrium thickness. If h0 > heq, then, as the crystallization front ad-
vances, the film thickness increases and at h0 < heq decreases. In the latter case, the hailstone grows in the wet regime
with the formation of a dull nonuniform structure of ice.

3. For the hailstone to grow in the wet regime with the formation of a transparent uniform structure of ice,
it is necessary that the water content of the cloud be higher than Kachurin’s critical water content. If the water content
of the cloud is higher than the Schumann–Ludlam critical water content but lower than Kachurin’s critical water con-
tent, then on the hailstone surface a film is formed, but it is unstable and will disappear in the course of time, and,
after this, the hailstone will grow in the dry regime with the formation of a dull nonuniform structure of ice.

NOTATION

q, water content of the cloud, kg/m3; qK, Kachurin’s critical water content, kg/m3; qSch–L, Schumann–Ludlam
critical water content, kg/m3; T, variable temperature at an arbitrary point inside a liquid film; T′, temperature of the
film surface, K; T0, freezing point of water, K; T∞, air temperature in the cloud, K; λ and λt, molecular and turbulent
heat-conductivity coefficients of water, J/(m⋅sec⋅K); λair, heat-conductivity coefficient of air, J/(m⋅sec⋅K); ν, coefficient
of molecular viscosity of water, m2/sec; D, diffusion coefficient of water vapor in air, m2/sec; r′, crystallization-front
radius, m; r′′ , radius of the outer surface of the film, m; r, distance from the hailstone center to the internal point of
the film, m; R, hailstone radius, m; h, film thickness, m; hs, steady thickness of the film in its turbulent flow, m;
heq, equilibrium thickness of the film, m; heq.c, critical value of equilibrium thickness, m; h0, initial thickness of the
film, m; hc, critical thickness of the film at which the turbulent heat-conductivity coefficient is equal to the molecular
heat-conductivity coefficient, m; v, dynamic velocity, m/sec; u∞, characteristic rate of film motion at a large distance
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from the ice–water interface, m/sec; V, rate of fall of the hailstone, m/sec; u B dr′′ ⁄ dt, rate of hailstone growth due to
the inflow of droplets, m/sec; uc, critical value of the rate of inflow of droplets, m/sec; w and w0, rate and initial rate
of motion of the crystallization front, m/sec; τ0, friction stress at the crystallization front, N/r2; F, friction stress on the
film surface, N/r2; ρ, ρair, and ρh, water, air, and hailstone density, kg/m3; ρv, vapor density near the hailstone surface,
kg/m3; ρv∞, vapor density in the environment at a long distance from the hailstone; kg/m3; cf, drag coefficient; b =
0.02, dimensionless empirical constant; B′, constant, m2/sec−1; B1, constant, m−1, sec−1; c, specific heat capacity of
water, J/(kg⋅K); Lcr, specific heat of water crystallization, J/kg; L, specific heat of condensation (or evaporation), J/kg;
E, entrapment coefficient; kt, turbulent heat diffusivity of film, m2/sec; k, molecular heat diffusivity of water, m2/sec;
t, time, sec; τ, characteristic time of motion of the crystallization front under turbulent flow of film, sec; M, Maclean
parameter, kg/(m2⋅sec⋅K); K, dimensionless parameter characterizing the transition from one structure of ice to another;
g, free-fall acceleration, m2/sec; Re, Reynolds number; Nu, Nusselt number; Sh, Sherwood number. Subscripts: t, tur-
bulent; f, frontal; air, air; hs, hailstone; cr, crystallization, s, steady; eq, equilibrium; c, critical, v, vapor.
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